Novel Construction of 4H-2,3-Dihydro-1,3-benzothiazine Ring via Nickel(0)-Catalyzed Reaction of o-lodobenzamide or o-lodobenzonitrile with Thioureas

Kentaro TAKAGI

College of Liberal Arts and Science, Okayama University, Tsushima, Okayama 700

Nickel(0) complex induced the catalytic reaction of *o*-iodobenzamide or *o*-iodobenzamide or *o*-iodobenzonitrile with thioureas giving rise to cyclized products, 4H-2,3-dihydro-2-imino-1,3-benzothiazin-4-one or 4H-2,3-dihydro-1,3-benzothiazine-2,4-diimine.

The application of transition-metal complexes to a synthesis of heterocyclic compounds has been proved to be unequivocally useful. 1) Thioureas, which possess four reactive sites, constitute versatile starting materials for the procuring various heterocyclic compounds; however, they have been scarcely utilized in the transition metal-promoted heterocyclic syntheses. 2) Here we will report a novel construction of 4H-2,3-dihydro-1,3-benzothiazines taking advantage of a nickel (0)-catalyzed reaction of iodoarenes with thioureas.

In the course of our study on the transition-metal catalyzed nucleophilic displacement of aryl halides,³) we found that *o*-iodobenzamide underwent the reaction with thiourea by the catalysis of a nickel(0) complex, generated in situ from bis(triethylphosphine)nickel(II) chloride and sodium cyanoborohydride as a reducing agent, to afford 4H-2,3-dihydro-2-imino-1,3-benzothiazin-4-one (2) in good yield. N-Substituted- or N,N'-disubstituted thioureas could be used in the place of thio-

urea to produce the corresponding 4H-2,3-dihydro-1,3-benzothiazine derivatives ($\underline{3}$ - $\underline{5}$) in good yields, too; although steric hindrance decreases the reaction rates considerably. Since 1) this nickel(0) catalyzes the nucleophilic displacement of aryl iodides with thioureas under cited conditions, 4) and 2) both nitrogen atoms of thioureas are incorporated into products ($\underline{2}$ - $\underline{5}$), this novel ring-construction probably proceeds via an initial S-arylation ($\underline{1}$) followed by a nucleophilic attack by the isothiuronium-nitrogen atom at the electrophilic amide-carbon atom (intramolecular amide exchange). Other electrophilic substituent like cyano group can be used in the place of amide group affording $\underline{6}$ as well. Iodoarenes containing an electrophilic but less co-ordinative orthosubstituent like acyl- or ester group, however, did not react with thiourea under the examined

Table 1. Synthesis of 4H-2,3-Dihydro-1,3-benzothiazinesa)

I R ¹ NHC(S)NHR ²			Time / h	Product (Yield/%b))	•	
E E	R1	R ²			S X	
CONH ₂ CONH ₂ ^{c)} CONH ₂ CN CO ₂ CH ₃ COCH ₃	Н СН ₃ С ₆ Н ₅ СН ₃ Н Н	H H CH ₃ H H	4 20 5 40 20 20 20	2 (71) 3 (85) 4 (81) 5 (80)d) 6 (42)e)	Z 3 X=NCH ₃ , Y=NH, Z=O 4 X=NC ₆ H ₅ , Y=NH, Z= 5 X=Y=NCH ₃ , Z=O 6 X=Y=Z=NH 7 X=Z=O, Y=NH	

- a) Every runs were carried out in DMF at 60 °C under nitrogen. Molar ratio of each component (Arl/thiourea/(PEt₃)₂NiCl₂/NaBH₃CN) was 1.0/1.5/0.04/0.08.
- b) Isolated yields. c) Run in NMP. d) The conversion was 45%.
- e) The yield of 7 after an acidic hydrolysis of 6.

conditions. Thus, 4H-2,3-dihydro-1,3-benzothiazine-ring, which is of special pharmacological interest,⁵) is now obtained readily from a novel combination of reagents (thioureas as S,N-binucleophiles and o-iodobenzoic acid derivatives as C,C-bielectrophiles) by using a procedure of operationally very simple.

Typical procedure is as follows: A mixture of *o*-iodobenzonitrile (229 mg, 1.0 mmol), thiourea (114 mg, 1.5 mmol), (PEt₃)₂NiCl₂ (14.6 mg, 0.04 mmol), 1.0 M THF-solution of NaBH₃CN (0.08 ml, 0.08 mmol), and DMF (0.5 ml) was stirred at 60 °C for 20 h under nitrogen. To the resulting solution, 6 N HCl (1 ml) was added. After stirring for 2 h at 80 °C, the reaction mixture was shaken with ether-brine. The ether-extract was chromatographed on a silica-gel column, affording 75 mg of 4H-2,3-dihydro-1,3-benzothiazine-2,4-dione (7) (42%). Mp 210-215 °C (lit.,6) 212-214 °C). Found: C, 53.44; H, 2.74; N, 7.81%. Calcd for C₈H₅NO₂S: C, 53.62; H, 2.81; N, 7.82%.

References

- 1) J. L. Davidson and P. N. Preston, Adv. Heterocycl. Chem., 30, 319 (1982).
- T. S. Griffin, T. S. Woods, and D. L. Klayman, Adv. Heterocycl. Chem., <u>18</u>, 99 (1975); K. Takagi, Chem. Lett., <u>1986</u>, 265.
- 3) K. Takagi and Y. Sakakibara, Chem. Lett., 1989, 1957.
- 4) K. Takagi, Chem. Lett., <u>1985</u>, 1307.
- 5) K. C. Liu, B. J. Shih, and J. W. Chern, J. Heterocycl. Chem., <u>25</u>, 1215 (1988); D. Jacob and H. Meier, ibid., <u>23</u>, 1085 (1986) and references cited therein.
- 6) A. E. Kretov and A. S. Bespalyi, Zh. Obshch. Khim., 33, 213 (1963).

(Received September 18, 1990)